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BASE PRESSURES AND CONVECTIVE HEAT-TRANSFER COEFFICIENTS 

FOR CLUSTERED SONIC NOZZLES WITH EDll?HASIS 

ON CHOKED EXHAUST BACKFLOW 

By John P. Weidner and James M. Cubbage 
Langley Research Center 

SUMMARY 

A base heating invest igat ion has been conducted t o  determine l o c a l  heat- 
t r ans fe r  coef f ic ien ts  and pressures due t o  backflowing exhaust gases from clus- 
t e r s  of th ree  and four sonic nozzles. T h i s  invest igat ion was concerned with 
the  condition f o r  which backflowing exhaust gases become confined within the  
nozzle c lus t e r  and choke a t  t h e  minimum area between adjacent nozzles. The 
models simulated nozzle arrangements of t yp ica l  launch vehicles,  and data  were 
obtained over a range of nozzle spacings, nozzle extensions beyond the base 
p la te ,  and nozzle t o t a l  pressures.  

It w a s  found t h a t  the  highest  pressures and heat- t ransfer  coef f ic ien ts  
generally occurred a t  the  base center, with a second but smaller r i s e  i n  heat- 
t r ans fe r  coef f ic ien t  occurring between adjacent nozzles. Base pressure and 
heat- t ransfer  coef f ic ien ts  were reduced by increasing e i t h e r  t he  nozzle spacing 
o r  the  nozzle extension, and the  highest  values were observed f o r  t h e  four- 
nozzle models. 
heat- t ransfer  coef f ic ien ts  a t  t h e  base center.  
sure, l e s s  heat t r ans fe r  occurs f o r  t he  l a rge r  nozzle spacings and f o r  t he  
smaller nozzle extensions. 

A d i r e c t  proport ional i ty  w a s  found between the pressures and 
A t  a common base-center pres- 

INTRODUCTION 

High-altitude operation of launch vehicles  containing clustered propulsive 
nozzles leads t o  in te rac t ion  between adjacent exhaust plumes and consequent 
backflow of hot exhaust gases i n t o  the  base region. 
t h e  exhaust backflow, trapped within the  nozzle c lus t e r ,  i s  through the  a rea  
between adjacent nozzles (window area). 
backflow becomes great  enough t o  choke the  c lus t e r  aerodynamically, making it 
impossible f o r  cooler ambient a i r  t o  en te r  o r  influence the  base region. 
flow phenomenon y ie lds  pressures within the  base region t h a t  are much higher 
than the  ambient pressure and introduces extremely high heating r a t e s ,  making 
an adequate thermal design necessary f o r  the  protect ion of t he  base and com- 
ponent p a r t s  contained within the  nozzle c lus t e r .  

The only escape route f o r  

A t  su f f i c i en t ly  high a l t i t u d e s  the  

This 



The problem of protect ing the  base region from excessive heating caused by 
backflow from clustered propulsive nozzles has been recognized f o r  t he  past  sev- 
e r a l  years. The research t o  date has been pr imari ly  concerned with heat-flux 
and pressure measurements on the  base of various clustered-rocket configura- 
t i ons ,  along with some s tudies  of the backflow cha rac t e r i s t i c s  involved. 
for  example, r e f s .  1 t o  4.) Also, heat- t ransfer  and pressure data have been 
reported on models of spec i f ic  launch-vehicle designs, such a s  Saturn. (See 
r e f s .  5 and 6.)  
e i t h e r  under conditions f o r  which choking of the  backflow within the  c lus t e r  
did not e x i s t  o r  f o r  which base pressures were of predominant i n t e r e s t .  The 
present invest igat ion w a s  designed t o  provide base-pressure and heat- t ransfer-  
coef f ic ien t  data f o r  c lus t e r s  of three and four  sonic nozzles over a range of 
nozzle spacings and nozzle pressures f o r  the  high-heating condition of choked 
backflow within the  nozzle c lus t e r .  

(See, 

However, these t e s t s  were usual ly  conducted with external  flow 

The invest igat ion reported herein was conducted i n  a blowdown f a c i l i t y  
employing a i r  a t  ambient temperature exhausting t o  atmospheric pressure.  
spacings between nozzles were 0.35, O.w, and 0.75 nozzle diameter; nozzle 
extensions from the  base were 0, 0.5, 1.0, and 1.5 nozzle diameters; and nozzle 
t o t a l  pressure ranged from 350 t o  550 ps ia .  

The 

SYMBOLS 

A 

An 

AS 

At 

AW 

a 

C t  

area,  square inches 

a rea  bounded by nozzles i n  plane of nozzle e x i t s ,  square inches 
( see f i g .  2) 

SM of m i n i m u m  areas between nozzles, bounded by nozzle-exit plane 
and base p l a t e ,  square inches (see f i g .  2) 

sum of t r i angu la r  a reas  between nozzles, bounded by nozzle-exit plane 
and exhaust plumes, square inches ( see  f i g .  4) 

t o t a l  window area between nozzles, A, + A+, square inches 

sonic veloci ty ,  f e e t  per second 

distance i n  plane of nozzle e x i t s  between ins ide  diameters of 
adjacent nozzles , inches 

spec i f i c  heat,  Btu/lb-% 

diameter , inches 

heat- t ransfer  coeff ic ient  measured on base, Btu/ft2-sec-OR 

thermal conductivity , Btu/ft2-sec-OR/ft 
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N 

N s t  

P 

P t  

9 

R 

r 

r0 

S 

T 

A!r 

Tg 

T t  

t 

A t  

v 

CI 

P 

number of nozzles 

Stanton number 

pressure, pounds per square inch absolute 

t o t a l  pressure as measured i n  the s e t t l i n g  chamber, pounds per 
square inch ab solute  

heat flux per un i t  area,  Btu/ft2-sec 

Reynolds number 

radial distance from center  of base, inches 

radial distance from center  of base t o  point of minimum distance 
between adjacent nozzles, inches (see f i g .  2) 

distance from base p l a t e  t o  nozzle-exit plane, inches 

temperature, degrees F 

incremental temperature 

t o t a l  temperature of exhaust gases on base, degrees F 

t o t a l  temperature as measured i n  s e t t l i n g  chamber, degrees F 

time, seconds 

incremental time, seconds 

veloci ty ,  f e e t  per second 

v iscos i ty ,  lb-sec/ftZ 

density,  lb-sec2/ft4 

Sub s c r i p t s  : 

a ambient conditions 

C conditions a t  base center  

e conditions a t  nozzle e x i t  

W conditions a t  base window 
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APPARATUS AND METHOD 

Test Apparatus and Models 

This experimental invest igat ion was conducted i n  a blowdown f a c i l i t y  with 
the  tes t  apparatus as shown schematically i n  f igure 1. The basic  apparatus 
consisted of a cy l indr ica l  s e t t l i n g  chamber, a secondary base p l a t e  t h a t  con- 
ta ined the  sonic nozzles, and a base p l a t e  which contained the  pressure and 
temperature instrumentation. I n  addition t o  a balsa insulat ing p la te  used t o  
reduce heat conduction t o  other p a r t s  of t he  tes t  apparatus, several  spacing 
p l a t e s  were used t o  provide the  desired nozzle extension. 
t he  s e t t l i n g  chamber from an a i r  supply system consisting of th ree  storage 
tanks, each w i t h  a 1000-cubic-foot capacity, and w a s  exhausted from t h e  sonic 
nozzles t o  atmospheric pressure.  

A i r  was supplied t o  

Spacer p l a t e s  were constructed from micarta and were of a thickness such 
t h a t  t h e  desired nozzle extension could be obtained by t h e i r  addition o r  
removal; a d i f fe ren t  s e t  of p l a t e s  w a s  required f o r  each nozzle spacing tes ted  
f o r  both t h e  three- and four-nozzle configurations. The instrumented base, 
fabr icated from a sheet of 1/32-inch inconel, w a s  made as t h i n  as p rac t i ca l  i n  
order t o  have a s m a l l  thermal capacity so t h a t  heat f l ux  could be determined 
more accurately from measurements of t i m e  rates of change of base temperatures. 
The holes i n  the  base p la te  through which the  sonic nozzles extended were made 
1/32 inch l a rge r  than t h e  outside diameter of the  sonic nozzles t o  prevent con- 
t a c t  of t he  nozzles with the  base p la te ,  thereby eliminating heat losses  by 
conduction. 

The sonic nozzles, which were 2.7% inches long, were made of s ta in less  
s t e e l  with an outside diameter of 0.875 inch and an ins ide  diameter of 
0.750 inch. A sketch of t he  three- and four-nozzle configurations and a l i s t  
of the various geometric parameters used are presented i n  f igure  2. Each geo- 
metric configuration w a s  t e s t ed  a t  nozzle t o t a l  pressures ranging from about 
350 t o  550 ps ia  and a t  a supply temperature of about 80° F. 

Ins t  rumentat ion 

The t o t a l  pressure and temperature of t he  a i r  supply i n  the  s e t t l i n g  cham- 
ber  were measured by t h e  instrumentation shown i n  figure 1. The base ins t ru-  
mentation consisted of s ta t ic-pressure o r i f i c e s  and thermocouples mounted i n  
the base p la te .  Two s e t s  of tests were required i n  order t o  obtain both a 
pressure and temperature measurement a t  t h e  center of the  base p la te .  
of the base instrumentation f o r  the f i rs t  s e t  of t es t s  i s  i l l u s t r a t e d  i n  the  
sketch of t ab le  I. The pressure-orifice and thermocouple locat ions a re  given 
as a r a t i o  of the r a d i a l  locat ion of the  instrumentation t o  the radius a t  the  
point of minimum distance between adjacent nozzles 
pressure o r i f i c e  and thermocouple were located on the  l i n e  of minimum distance 
between adjacent nozzles. 

Location 

r/ro. I n  a l l  cases, a 
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Models f o r  t he  second s e t  of t e s t s  contained instrumentation located as 
shown i n  t h e  sketch of t a b l e  11. These models contained a l imited number of 
s ta t ic-pressure o r i f i ce s ,  located t h e  same as f o r  the  first s e t  of t e s t s ,  i n  
order t o  insure t h a t  t he  flow conditions were similar i n  both cases. Plate-  
center  pressures a t  a common nozzle t o t a l  pressure were assumed t o  be the  same 
f o r  both s e t s  of t e s t s .  Thermocouple locat ions were confined t o  an area within 
the  nozzle c lus t e r  i n  order t o  obtafn a more complete survey i n  t h e  a rea  of 
pa r t i cu la r  i n t e r e s t .  I n  these models a thermocouple w a s  located a t  t he  base 
center i n  order t o  measure a stagnation-point heat- t ransfer  coef f ic ien t  of t he  
backflowing gases. Additional t e s t s  were conducted i n  order t o  obtain schlieren 
photographs of the  backflow phenomenon and t h e  flow cha rac t e r i s t i c s  a t  t he  base 
p l a t  e.  

The s ta t ic-pressure o r i f i c e s ,  with ins ide  diameters of 0.020 inch, were 
connected t o  pressure transducers which were i n  tu rn  connected t o  a continu- 
ously recording oscil lograph. Temperature instrumentation consisted of No. 30 
i ron  and constantan thermocouples spot-welded t o  t h e  underside of t he  base 
p la te .  A l l  thermocouple w i r e s  were connected t o  a recording oscil lograph. 

Procedure 

For each nozzle-cluster configuration, data were taken a t  f i v e  nozzle 
t o t a l  pressures a t  i n t e rva l s  of about 50 p s i  between 350 and 550 ps ia .  Before 
each test the  base p l a t e  was ch i l led  with dry i ce  t o  about -100' F t o  provide 
an i n i t i a l  temperature difference between the  p l a t e  and t h e  exhaust gas and 
hence provide a su f f i c i en t ly  high heat f l ux  in to  the p l a t e  t o  increase the  
accuracy of the  measurements. A s  soon as the base w a s  ch i l led ,  a i r  a t  t he  
desired t o t a l  pressure was admitted t o  the  s e t t l i n g  chamber and pressure and 
temperature data were recorded. 
grea tes t  i n t e r e s t  were recorded during the  f i r s t  few seconds of each test ,  
these data  were recorded continuously over the  time period required f o r  t he  
supply pressure t o  decrease 50 p s i .  A t  this point,  the  a i r  supply w a s  cut off  
and the  base w a s  rech i l led  f o r  a new t e s t .  Thus, continuous pressure data  were 
obtained over the  supply-pressure range from 350 t o  550 psia .  Chi l l ing of the  
model caused some f r o s t i n g  of t he  base p l a t e ,  but t h i s  f r o s t  w a s  observed t o  
disappear immediately a f t e r  the  a i r  was admitted t o  the  s e t t l i n g  chamber. Con- 
sequently, the  f r o s t  w a s  not considered t o  be a fac tor  i n  determining heat-  
t r a n s f e r  coeff ic ient  s. 

Although t h e  pressure and temperature data  of 

Analysis of Heat-Transfer Data 

The temperature data  obtained i n  these tests were converted i n t o  a heat-  
t r a n s f e r  coef f ic ien t  which i s  defined as the  heat f l u x  in to  the  p l a t e  divided 
by a temperature difference.  
thermal conductivity, l a t e r a l  conduction w a s  assumed negl igible  so t h a t  a un i t  
area of t he  base p l a t e  was e s s e n t i a l l y  a calorimeter. The heat flux per u n i t  
area w a s  thus  calculated from the  product of the time r a t e  of change of p l a t e  
temperature and the  thermal capacity of the  p l a t e .  

Since the  base p l a t e  w a s  t h i n  and had a low 

Radiation w a s  considered 
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negl igible  since the  exhausting a i r  w a s  a t  a low temperature. The propert ies  
of the  inconel base p l a t e  and the  heat-flux equation are:  

Specif ic  heat,  c, Btu/lb-OR . . . . . . . . . . . . . . . . . . . . .  0.093 
Speci f ic  volume, v, f t 3 / l b  . . . . . . . . . . . . . . . . . . . . .  0.00188 
Conductivity, k, Btu/ft*-hr-OR/ft . . . . . . . . . . . . . . . . . .  8.5 
Pla t e  thickness,  x, f t  . . . . . . . . . . . . . . . . . . . . . . .  0.00260 

Thermal capacity, E Btu/ft*-OR . . . . . . . . . . . . . . . . . .  0.131 v ’  

The temperature difference used t o  calculate  the heat- t ransfer  coeff ic ient  
i s  normally based on the  difference between the  adiabat ic  wal l  temperature and 
the p l a t e  temperature, but with the  l imited pressure data  of t h i s  invest igat ion 
it was not possible t o  e s t ab l i sh  with accuracy the t r u e  adiabat ic  w a l l  tempera- 
t u r e  along the  p l a t e .  However, t h i s  ad iaba t ic  w a l l  temperature would not ordi-  
na r i ly  be a known parameter t o  a designer making use of these heat- t ransfer  
coef f ic ien ts .  Hence, the heat- t ransfer  coeff ic ient  has been defined on the  
b a s i s  of the difference between t h e  t o t a l  temperature of the exhaust gases and 
the  p l a t e  temperature. Although the  p l a t e  w a s  t h i n ,  t he  temperature drop 
through the  p l a t e  resul ted i n  a low measured p l a t e  temperature and required a 
correction t o  the  data.  
t h a t  the  heat f l ux  in to  the  p l a t e  w a s  constant a t  any spec i f ic  t i m e .  It was 
found t h a t  
difference.  This r e s u l t  may be obtained from the  temperature response chart  
on page 119 i n  reference 7. With this correction, the  equation t o  determine 
heat- t ransfer  coef f ic ien t  i s :  

The temperature drop w a s  calculated on the  assumption 

AT = O.35q, which amounts t o  about 108 of the t o t a l  temperature 

Typical temperature responses f o r  thermocouples a t  the  center of the base 
c lus te r ,  a t  the  window, and i n  the  s e t t l i n g  chamber a re  shown i n  the  upper l e f t -  
hand corner of f igure  3. The r i s e  of the  t o t a l  temperature i s  due t o  a com- 
pression of the  a i r  contained i n  the  piping and the  s e t t l i n g  chamber when the  
valve upstream of t h e  s e t t l i n g  chamber i s  opened. The l ag  i n  response of the  
base temperature represents the  t i m e  required f o r  the a i r  supply valve t o  open 
and the  desired t o t a l  pressure t o  become establ ished i n  the  s e t t l i n g  chamber 
(upper right-hand corner of f i g .  3). 

After 10 seconds the temperatures i n  the  s e t t l i n g  chamber and a t  the  base- 
p l a t e  center and window posi t ions leveled off  t o  about 870 F, 8 4 O  F, and TO0 F, 
respectively,  approaching equilibrium conditions. The small difference between 
T t  and T, i s  thought t o  represent a small amount of l a t e r a l  conduction due 
t o  the  colder portion of the base outside the  c lus t e r .  The difference between 
Tc and T, represents t he  difference between the  t o t a l  temperature and the  
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adiaba t ic  wall  temperature which would occur i n  a laminar flow a t  a Mach number 
of 1.0. 

Heat-flux and heat- t ransfer-coeff ic ient  data  calculated from the  tempera- 
t u r e  data  a t  0.1-second in t e rva l s  a r e  presented i n  the  lower portion of f ig -  
ure 3, with the temperature drop through the  p l a t e  taken i n t o  account i n  t he  
heat- t ransfer  coef f ic ien ts .  Theoretically,  t he  heat- t ransfer  coef f ic ien t  
should have remained constant once the backflow was established i n  the model; 
however, because of s m a l l  heat losses  present i n  the t e s t  setup, the  heat- 
t r ans fe r  coef f ic ien t  decreases with time. The primary cause of t h i s  decrease 
i s  thought t o  be l a t e r a l  conduction along the  p l a t e .  The increasing tempera- 
t u r e  difference between T, and T, with increasing time i s  indicat ive of an 
increase i n  l a t e r a l  heat conduction. There i s  a l so  a simultaneous decrease of 
heat f l ux  in to  the  p l a t e .  A combination of these two f ac to r s  accounts f o r  the  
increasing influence of l a t e r a l  conduction and consequent decrease i n  heat- 
t r a n s f e r  coe f f i c i en t .  The dashed port ion of the heat-flux curve represents t he  
heat f l ux  required t o  produce a constant heat- t ransfer  coef f ic ien t .  
heat-flux measurements due t o  conduction losses  from the  back of the  base p l a t e  
were minimized by a groove, 1/4 inch wide and 3/16 inch deep, cut i n to  the  
ba lsa  insulat ing p l a t e  d i r e c t l y  under the  thermocouple locat ions.  Since the  
temperatures on t h e  base showed no s igni f icant  change u n t i l  a f t e r  0.4 second, 
the t e s t i n g  time before the  desired heat- t ransfer  coef f ic ien ts  were obtained 
was about 0.5 second. Because of the  difference between the adiabat ic  wal l  
temperdture a t  t he  window and the t o t a l  temperature, which i s  approximately the  
same a s  the difference between Tc and T, a f t e r  10 seconds, t he  heat- t ransfer  
coef f ic ien ts  calculated i n  t h e  region of t he  window a re  about 10% lower than 
the  heat- t ransfer  coef f ic ien t  based on recovery temperature. 

Errors i n  

Because of t he  r i s e  and f a l l  of heat- t ransfer  coeff ic ient  with time caused 
by the  pressure r i s e  i n  the  s e t t l i n g  chamber and subsequent l a t e r a l  conduction 
along the  p l a t e ,  it was necessary t o  calculate  values of heat- t ransfer  coef- 
f i c i e n t  a t  0.1-second in t e rva l s  u n t i l  the  peak value was found. This maximum 
value was then considered t o  be the  desired heat- t ransfer  coeff ic ient  f o r  the  
given operating conditions. It i s  believed t h a t  heat- t ransfer  coef f ic ien ts  
calculated a s  out l ined a re  within the  accuracy of the  e r ro r  involved, gen- 
e r a l l y  l e s s  than 10s. 
temperature-time curves. 

The e r r o r  comes about through taking the slopes of the 

FLOW MODEL 

The exhaust-gas backflow and r e su l t i ng  base pressures associated with the  
three- and four-nozzle c lus t e r s  a r e  a r e s u l t  of a complicated flow pa t te rn  s e t  
up by the  impinging exhaust plumes. I n  order t ha t  the  experimental r e s u l t s  
might be b e t t e r  understood, a flow model was constructed t o  determine some of 
the mechanics behind the  base-backflow phenomenon. 

A sketch of t y p i c a l  three-  and four-nozzle c lus t e r s  i s  shown i n  f igure  4j 
points  between adjacent nozzles, where jet-boundary streamlines from t h e  
neighboring plumes impinge, describe a l i n e  which i s  designated the  "line of 



impingement." Along t h i s  l i n e ,  oblique o r  normal shocks formed by plumes 
impinging on each o ther  produce high-pressure regions and subsequent mass 
removal or  exhaust backflow from the  streamlines. Deta i l s  of the or ig in  of 
the  exhaust backflow from in te rsec t ing  streamlines are given i n  references 1 
and 2. For a given nozzle configuration, major f a c t o r s  which influence the 
amount of backflow a r e  the  pressure r i s e  across  the  shock wave along the l i n e  
of impingement and the  mixing length along individual  impinging streamlines 
measured from t h e  nozzle e x i t  t o  the point of impingement. 
tance between adjacent nozzles there  i s  a maximum angle of impingement and a 
minimum mixing length.  By following along the  l i n e  of impingement away from 
t h i s  point,  it can be seen t h a t  t h e  angle between impinging streamlines and the  
subsequent shock wave decreases while the  mixing length increases.  When the  
l o c a l  backflow i s  assumed t o  be d i r e c t l y  proportional t o  the  mixing length, 
simplified calculat ions indicate  t h a t  t he  mixing length has the grea tes t  in f lu-  
ence on exhaust backflow; hence, g rea te r  backflow might be expected a short  
distance away from the  point of minimum distance between the  nozzles. 

A t  the  minimum dis-  

Lines of impingement, or iginat ing from neighboring nozzles forming the 
c lus te r ,  converge over t he  center  of the  base; t h i s  convergence causes a large 
amount of exhaust backflow from t h i s  point .  The subsequent stream of high- 
energy backflow from t h i s  common point of in te rsec t ion  produces a high pressure 
a t  the center  of t he  base which i s  greater  than t h a t  produced from the  backflow 
or ig ina t ing  a t  other  points  along the  l i n e  of impingement. 
gradient should therefore  e x i s t  across  the  base i n  which the  average t o t a l  
pressure a t  t he  window i s  less than t h a t  measured a t  t h e  base center.  
assumed flow model i s  supported by total-pressure data  along the base of a 
four-nozzle c lus t e r  presented i n  reference 2 i n  which the  grea te r  t o t a l  pres- 
sure i s  shown t o  occur a t  t h e  base center.  "he magnitude of this high loca l  
pressure a t  t he  base center i s  highly dependent on the  amount of nozzle exten- 
sion from the  base, since a la rge  nozzle extension would allow more room f o r  
t he  core of hi&-energy backflow t o  m i x  with adjacent low-energy backflow. 
i f  supersonic backflow i s  developed i n  the  high-energy core of backflowing gas 
through mass addition, a s  discussed i n  reference 2, t he  g rea t e r  nozzle exten- 
sion w i l l  allow more room f o r  fu r the r  expansion and subsequent grea te r  t o t a l -  
pressure losses  through the  normal shock "standing o f f "  t he  base. 
sented i n  reference 2 are total-pressure d is t r ibu t ions ,  measured perpendicular 
t o  t h e  base p l a t e  a t  t h e  window location, which show the  higher t o t a l  pressures 
a t  the base, with the  t o t a l  pressure decreasing with increased distance above 
the  base. The cause of t h i s  change i n  t o t a l  pressure was a t t r i bu ted  t o  stream- 
l i n e s  near the  base a t  t h e  window or ig ina t ing  from backflow near the  base cen- 
t e r ,  whereas streamlines a t  grea te r  dis tances  above the  base or ig ina te  from low- 
energy backflow near the  window. This total-pressure gradient at the  window 
may r e s u l t  i n  mixed flow when it i s  assumed t h a t  there  i s  no s ta t ic-pressure 
gradient;  t h a t  is, the backflow would be sonic near t h e  base but would be sub- 
sonic a t  t he  top port ions of the window. 

A total-pressure 

This 

O r ,  

A l s o  pre- 
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RESULTS AND DISCUSSION 

Schlieren Photographs 

Schlieren photographs of four-nozzle models a r e  presented i n  f igure  5 a t  
r a t i o s  of nozzle-exit pressure t o  ambient pressure of about 19 f o r  various noz- 
z l e  extension r a t io s .  The r e f l ec t ion  of the  exhaust-plume in t e rna l  shocks from 
the plume impingement area i s  c l ea r ly  v i s ib l e .  These re f lec ted  shocks a re  s i m -  
i l a r  t o  those formed from an exhaust plume impinging on a p l a t e  placed perpen- 
d icu lar  t o  the  base, as reported i n  reference 8. 
described e a r l i e r  a r e  a l s o  v i s i b l e  i n  some of the photographs and are  indicated 
by white dots i n  f igure  5(b).  Since the re  i s  another s e t  of nozzles d i r e c t l y  
behind those shown i n  the  photographs, the  l i n e s  of inpingement occur between 
the  two s e t s  of nozzles. 

The l i n e s  of impingement 

Pressure Data 

Since t h i s  invest igat ion w a s  intended t o  provide data f o r  conditions of 
choked exhaust backflow within a c lus t e r  of nozzles, it w a s  necessary t o  deter-  
mine the extent of backflow choking within the  various model configurations 
tes ted .  The accepted c r i t e r i o n  f o r  a choked nozzle c lus t e r  i s  t h a t  fur ther  
increases i n  the  r a t i o  of t he  nozzle-exit pressure t o  the  ambient pres- 
sure pe/pa (nozzle-exit pressure r a t i o )  through increases i n  a l t i t u d e  pro- 
duce no change i n  t he  flow propert ies  o r  pressures within the  c lus t e r .  Hence, 
one of the more sens i t ive  measures of choking would be the  r a t i o  of t he  base- 
window pressure t o  the  base-center pressure &/per which should remain constant 
a s  t he  nozzle-exit pressure r a t i o  continues t o  increase above the  value required 
t o  i n i t i a t e  choking. Curves of &/pc p lo t ted  against  pe/pa a re  presented 
i n  f igure  6 f o r  the  various nozzle extensions and nozzle spacings tes ted ;  a 
so l id  l i n e  has been drawn through the data  symbols t o  indicate  the  conditions 
a t  which choking was thought t o  occur. Instead of a constant value a t  the  
choked conditions, these curves show a s m a l l  decrease i n  with increases 
i n  pelpa. Therefore, choking w a s  considered t o  terminate when the  slope of 
t he  curve showed a s igni f icant  change as pe/pa decreased. The small decrease 
i n  &/pc f o r  choked conditions could be a r e s u l t  of p a r t i a l  choking a t  the  
window; t h i s  p a r t i a l  choking i s  most predominant f o r  the case of extended noz- 
z l e s  f o r  which a l a rge r  total-pressure gradient perpendicular t o  the  base a t  
t he  window m i g h t  be expected. 

&/pC 

The general t rend of decreasing pw/pe with decreasing nozzle extension 
f o r  choked conditions does not include the zero nozzle extension. The abnor- 
mally high values of &/pc f o r  s/de = 0 shown i n  f igure  6(a) a t  
Ct/de = 0.35 and 0.50 
exhaust plumes t o  the  base; t h i s  condition r e s u l t s  i n  a flow component normal 
t o  the  surface a t  t h e  window. Consequently, some impact-pressure influence i s  
f e l t  i n  t h i s  region. These high pressures along the  base a t  s/de = 0 may 

a r e  thought t o  be a r e su l t  of t he  close proximity of t h e  
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a l s o  be seen from rad ia l  pressure d is t r ibu t ions  and a re  presented i n  the  sec- 
t i o n  e n t i t l e d  "Radial pressure d is t r ibu t ions ."  

The r a t i o  of the base-center pressure t o  the  nozzle-exit pressure pc/p, 
i s  shown i n  f igure 7 as a function of nozzle-exit pressure r a t i o  f o r  the var- 
ious model configurations t e s t ed .  Again, a so l id  l i n e  i s  drawn through the  data 
symbols t o  indicate  the  conditions a t  which choking i s  believed t o  ex i s t .  These 
curves are  similar t o  curves of base-center pressure p lo t ted  against  a l t i t u d e  
normally presented i n  reports  concerning backflow of exhaust gases. However, 
because of the Reynolds number e f f ec t  introduced by varying the  nozzle t o t a l  
pressure t o  a l t e r  t he  pressure r a t i o  across the  nozzles, it was necessary t o  
use the  r a t i o  pc/pe i n  order t h a t  it be comparable t o  other data.  Where 
choking occurs ( a t  other than zero nozzle extension),  t he  curves f o r  the  four- 
nozzle c lus te r  i n  f igure 7(a) exhibit  an apparent t rend of r i s i n g  and level ing 
off i n  the  choked region. This r i s e  i n  pc/pe i s  believed t o  represent the  
t r ans i t i on  zone between unchoked and choked backflow and r e su l t s  from increasing 
ve loc i t i e s  a t  the  window; eventually, sonic veloci ty  i s  reached and the c lus te r  
i s  choked. A s i m i l a r  t rend i s  reported i n  reference 2 i n  which a l t i t ude  e f f e c t s  
on the  base pressure were considered. This trend i s  not as evident i n  the  
three-nozzle models of t h i s  invest igat ion since the  backflow w a s  not as con- 
f ined and l i t t l e  choking occurred. 

Radial pressure d is t r ibu t ions .  - Radial pressure d is t r ibu t ions  along the  
base f o r  those configurations TOT which choking or near choking was observed i n  
f igure 6 a r e  presented in  f igures  8 t o  1 2  i n  the  form of the  r a t i o  of l oca l  base 
pressure t o  base-center pressure p/pc plot ted against  the  nondimensional 
radius r a t i o  r/ro from the  center of the  base. For each configuration three 
curves a re  presented corresponding t o  the  maximum, intermediate, and minimum 
pressure r a t i o s  tes ted .  Choked-backflow conditions a re  indicated by the  flagged 
data symbols. I n  general, these pressure d is t r ibu t ions  decrease up t o  the  win- 
dow posi t ion ( r/ro = 1.0) , a t  which point choking occurs, a f t e r  which the  pres- 
sure approaches ambient conditions, a s  i s  indicated by a dashed l i n e .  An 
exception can be seen i n  the  curves f o r  zero nozzle extension a t  the choked 
conditions f o r  which a continued drop i n  pressure occurs beyond r/ro = 1.0 
t o  about r/ro = 1.4.  
flow ve loc i ty  i s  supersonic i n  t h i s  region. However, heat-transfer-coefficient 
data t o  be presented indicate  t h a t  a t  most, supersonic backflow would e x i s t  
only t o  about 
exhaust plumes t o  the  base r e su l t s  i n  some impact-pressure influence i n  the  
region of the  window. This impact-pressure influence a l so  can be observed i n  
f igure 6 when t h e  abnormally high values of a t  t he  zero nozzle exten- 
sion a re  considered. 

This continuing drop i n  pressure indicates  t h a t  t he  back- 

r/ro = 1.1. It i s  believed t h a t  t he  close proximity of the  

%/pc 

Effect  of number of nozzles.- Overall, the  four-nozzle c lus te r  yielded 
grea te r  base pressures and a greater  number of choked configurations than did 
t h e  three-nozzle c lus t e r .  (See f i g .  7 . )  The reason may be found by re fer r ing  
t o  f igure 2, which reveals  t h a t  fo r  an extended-nozzle configuration the r a t i o  
of the  base area within the nozzle c lus te r  An 
z l e s  As i s  considerably smaller f o r  the  three-nozzle models. Since the  base 
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area  between the  nozzles i s  an indicat ion of the  amount of plume area from 
which backflow can be derived, it i s  apparent t h a t  there  i s  l e s s  backflow per 
u n i t  window area f o r  t he  three-nozzle models. Hence, the three-nozzle models 
a r e  l e s s  r e s t r i c t i v e  and more d i f f i c u l t  t o  choke. 

Effect  of nozzle extension.- The e f f e c t  of nozzle extension on backflow 
pressure and choking may be seen i n  f igure  7 which, a t  a constant value of 
pe/pa, shows a decrease i n  base-center pressure and backflow choking with 
increases  i n  nozzle extension. This decrease i n  the  base-center pressure i s  a 
r e s u l t  of total-pressure losses  i n  the  high-energy backflow e i t h e r  through 
mixing losses  or by supersonic backflow followed by a normal shock standing off  
the  center  of the base.  These pressure losses  a t  t h e  base center r e s u l t  i n  a 
lower average pressure gradient between the  base center and window as the noz- 
z l e  extension i s  increased; t h i s  t rend may be seen by comparing the p a r t s  of 
f igure  8. 
t i o n  f o r  
theory with a constant t o t a l  pressure.  

It may a l so  be observed i n  f igu re  8(d) t h a t  the  pressure d is t r ibu-  
s/de = 1.5 approaches t h a t  obtained from one-dimensional nozzle 

Figure l3(a) presents  r a d i a l  pressure d i s t r ibu t ions  f o r  the  various nozzle 
extensions, replot ted i n  the form of the  l o c a l  base pressure against  the non- 
dimensional radius  r a t i o .  This f igure  shows that a s  t h e  nozzle extension 
increases, changes i n  pressure occur primarily i n  the  center region of the  base, 
up t o  about r/ro = 0.5. It appears t h a t  t he  increased window area obtained 
through increases  i n  nozzle extensions serves mainly t o  l i m i t  conditions of 
backflow choking and, f o r  choked configurations, has l i t t l e  or no influence on 
the  base pressures outside the  base-center region. The upward displacement of 
t he  curve of 
due t o  the  close proximity of the  exhaust plumes t o  the  base. 

s/de = 0 i s  believed t o  r e s u l t  from measuring impact pressure 

Effect  of nozzle spacing.- Increasing the  spacing between nozzles inf lu-  
ences t h e  backflow by increasing the plume area and jet-boundary mixing length 
within t h e  nozzle c lus t e r .  The increased mixing length permits an increase i n  
backflow; however, a t  the  same time the  angle between impinging plumes 
decreases, tending t o  decrease the  backflow. On the  other hand, the  window 
area i s  increased with increased nozzle spacing, causing the  c lus t e r  t o  be l e s s  
confining and yielding lower base pressures and l e s s  choking; this e f f e c t  can 
be seen i n  f igure  7 by comparing curves of various nozzle spacings. A s  a 
r e s u l t ,  t he  majority of the  choked data  obtained i n  t h i s  invest igat ion w a s  a t  
t he  smallest nozzle spacing (Ct/de = 0.35) .  

It w a s  found e a r l i e r  t ha t ,  neglecting zero-extension data,  increasing the  
nozzle extension had the  e f f ec t  of decreasing the  base pressure on ly  i n  the  
center region of the  base. This i s  not t he  case f o r  increases i n  nozzle 
spacing. 
Ct/de = 0.35 and 0.50 

Figure l3 (b )  i s  a comparison of base pressure d i s t r ibu t ions  f o r  
f o r  N = 4 and reveals  a general  reduction i n  base 

pressure with increased nozzle spacing out 
t i o n  suggests a 
decreased angle 

more uniform backflow from 
between impinging plumes. 

t o  r/ro = 1.0. This general  reduc- 
the j e t  plumes, r e su l t i ng  from the 
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Heat-Transfer Coefficients 

Heat-transfer-coefficient d i s t r ibu t ions  across the  base a re  presented i n  
figures 14 and 15 as the  r a t i o  of local-  t o  base-center heat-transfer coef- 
f i c i e n t  p lo t ted  against  t h e  nondimensional radius r a t i o .  The data  presented 
a re  f o r  only those conditions a t  which choked backflow i s  suspected. Good 
agreement w a s  obtained between data  from the  two sets of t e s t s  and i s  shown i n  
f igu res  14(c) and 15(a); f o r  t he  remaining p a r t s  of f igures  14 and 15, an aver- 
age heat- t ransfer  coef f ic ien t  w a s  used when two data  symbol points  appeared a t  
t h e  same value of r/ro. I n  general, the  heat- t ransfer  coef f ic ien ts  decreased 
from the  base center outward, followed by a s m a l l  rise i n  t h e  window region 
where t h e  flow i s  choked. For a l l  the conditions considered, heat- t ransfer  
coef f ic ien ts  i n  t h e  center  region of the  p l a t e  were a s  great a s  o r  grea te r  
than those i n  t h e  region of the  window. I n  some cases, pa r t i cu la r ly  a t  
Ct/de = 0.35 with N = 4 
choked a l i t t l e  beyond 
coeff ic ient  a t  r/ro = 1.1. The heat- t ransfer-coeff ic ient  d i s t r ibu t ions  varied 
with the  tes t  parameters i n  a manner s imilar  t o  t h a t  of t he  pressure dis t r ibu-  
t i ons  presented e a r l i e r .  

( f i g s .  14(a) and ( b ) ) ,  t h e  c lus t e r  appears t o  be 
r/ro = 1.0, a s  i s  indicated by a high heat- t ransfer  

Effect  of number of nozzles.- For s imilar  t e s t  conditions t h e  three-nozzle 
models yielded the  lower base-center  pressures and heat- t ransfer  coeff ic ients ,  
which may be seen by comparing f igures  14(a) and (b)  with l? (a ) .  A comparison 
of these f igures  a l so  shows t h a t  t he  change i n  the  l e v e l  of t he  heat-transfer- 
coeff ic ient  d i s t r ibu t ions  across the base i s  grea te r  f o r  the  three-nozzle 
models than f o r  t he  four-nozzle models when the  nozzle extension i s  increased 
from 
three-nozzle models suggests a more uniform energy l e v e l  of t he  exhaust back- 
flow within these models having a nozzle extension. 

s/de = 0 t o  0.5. This grea te r  change i n  pressure d i s t r ibu t ion  f o r  the  

Effect  of nozzle extension.- The e f f ec t  of increasing nozzle extension on 
the  base-center heat- t ransfer  coef f ic ien ts  and the  r a d i a l  heat-transfer- 
coeff ic ient  d i s t r ibu t ions  i s  shown i n  f igures  14(a)  t o  ( e )  and l 5 ( a ) .  
of curves i s  f o r  a constant value of 
with the  l a rge r  nozzle extensions yielded t h e  lower base-center heat- t ransfer  
coeff ic ients ,  a s  indicated i n  these f igures .  An exception t o  t h i s  i s  f o r  the  
four-nozzle model a t  t he  zero nozzle extension which y i e lds  a higher base- 
center pressure but i s  accompanied by a heat- t ransfer  coeff ic ient  equal t o  o r  
l e s s  than t h a t  fo r  the  configurations with 
t o  ( c )  .) The low heat- t ransfer  coef f ic ien ts  a t  t h e  zero nozzle extension may 
be caused by a ch i l l i ng  of the  highly confined backflow gases by the  cooler 
base, causing t h e  gas temperature i n  the base region t o  be cooler than the  
gases i n  t h e  s e t t l i n g  chamber. This ch i l l i ng  e f f ec t  i s  dlscussed l a t e r .  

Each s e t  
pe/pa. I n  general, the  configurations 

s/de = 0.5.  (See f i g s .  14(a) 

A more even r a d i a l  heat- t ransfer-coeff ic ient  d i s t r ibu t ion  i s  a l so  noted 
from these f igures  when t h e  nozzle extension i s  increased and i s  a t t r ibu ted  t o  
increased losses  i n  the  core of high-energy backflow origlnat ing over t he  base 
center.  A s  shown i n  the  previous discussion on the  e f f e c t  of nozzle extension 
on base pressures, increasing nozzle extension resu l ted  i n  decreasing base 
pressures primarily i n  the  center region of t he  base. A s i m i l a r  e f f ec t  may 
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be seen from the  data i n  f igures  14(a)  and (b )  i f  values of the heat-transfer 
coeff ic ient  r a t i o s  are multiplied by t h e  center value he; t h i s  operation w i l l  
show t h a t  f o r  a nozzle extension other than zero the  var ia t ion  of heat-transfer 
coeff ic ient  with nozzle extension i s  primarily confined t o  
suggests a well-defined core of high-energy backflow impinging on the  center of 
the base. Supersonic backflow with a standing shock over the base center 
would be a log ica l  explanation f o r  t he  decreasing pressures and heat-transfer 
coeff ic ients  a t  the base center as t h e  nozzle extension i s  increased. 
r e f .  2.)  

he. This r e s u l t  

(See 

Effect  of nozzle spacing.- The e f f e c t  of nozzle spacing on heat-transfer 
coeff ic ient  f o r  the four- and three-nozzle models i s  presented i n  f igures  14(d) 
and 15(b),  respectively.  
the smaller nozzle spacing yielded the higher base-center heat-transfer coef - 
f i c i e n t s .  There were some s m a l l  var ia t ions i n  the  r a d i a l  heat-transfer- 
coeff ic ient  d i s t r ibu t ions  a t  t he  d i f fe ren t  nozzle spacings, par t icu lar ly  i n  the 
region of the window; however, from these figures no de f in i t e  pa t te rn  w a s  found 
t o  occur. 

It can be seen from these f igures  t h a t  models having 

Effect of nozzle pressure r a t i o . -  A decrease i n  heat-transfer coeff ic ient  
a t  the base center occurred w i t h  decreases i n  nozzle pressure rati;o. 
f i g s .  14(e) ,  14 ( f ) ,  l 5 ( c ) ,  and l ? ( d ) . )  This decrease was brought about by a 
Reynolds number e f f e c t  resu l t ing  from a varying of t h e  nozzle t o t a l  pressure 
when the  ambient pressure w a s  held constant. Theoretically, with choked flow 
a t  the windows, t h e  base pressure and heat-transfer coeff ic ient  would remain 
constant with changes i n  nozzle pressure r a t i o  i f  the t o t a l  pressure remained 
constant and t h e  ambient pressure decreased a s  would occur with increases i n  
a l t i t u d e .  The heat-transfer-coefficient d i s t r ibu t ions  showed no s ignif icant  
change with nozzle pressure r a t i o ,  indicating l i t t l e  change of t he  flow pat- 
t e r n s  within the  nozzle c lus t e r  under the  choked-backflow conditions. 

(See 

Effects  of Backflow Characterist ics on Base-Center 

Heat-Transfer Coefficients 

I n  t h e  preceding sections it w a s  found that a t  a constant nozzle pressure 
r a t i o  both the  base-center pressure and heat-transfer coeff ic ient  w e r e  affected 
by nozzle extension and spacing. However, because of t he  strong dependency of 
heat t ransfer  on l o c a l  pressure, l i t t l e  has been learned concerning t h e  e f f e c t s  
of changes i n  the charac te r i s t ics  of t he  backflow. The e f f e c t s  of base-center 
pressure on the  base-center heat-transfer coeff ic ients  a r e  presented i n  f i g -  
ure 16(a) f o r  t he  four-nozzle models. These curves show a s t ra ight - l ine  rela-  
t ionship between the  base-center heat-transfer coeff ic ient  and pressure, which 
i s  independent of choking. By considering a constant base-center pressure, t he  
e f f e c t s  of nozzle extension on base-center heat-transfer coeff ic ient  may be 
seen. Ct/de = 0.35, t he  heat-transfer coeff ic ient  
i s  constant a t  t he  two highest nozzle extensions but decreases a s  the nozzle 
extension approaches zero. The decrease i n  heat-transfer coeff ic ient  a t  the 
lower nozzle extensions i s  believed t o  be caused by a lowering of t he  average 
gas temperature by t h e  base from a type of base ch i l l i ng  e f f ec t .  T h i s  ch i l l i ng  

A s  shown i n  f igu re  16(a) a t  
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e f f e c t  occurs under conditions fo r  which the  backflow i s  highly confined by 
small windows (e .g . ,  see f i g .  5 a t  
exhaust gases out of the  c lus t e r  t o  be low. 

S/de = 0),  causing the  mass flow ra t e  of 

I n  order t o  prove the  concept of base ch i l l i ng  a t  low nozzle extensions, 

The temperature drop was calculated by 
calculat ions were made t o  determine the  temperature drop that might be’expected 
t o  occur within t h e  exhaust backflow. 
equating the  heat l o s t  from t h e  backflow gas t o  the  heat gained by the base 
p l a t e .  The plane area An was taken from f igure  2, and the  window area A, 
f o r  the  models with “/de = 0 was estimated from schl ieren photographs. Sonic 
ve loc i ty  w a s  assumed t o  e x i s t  at the windows, and the  heat f l u x  at  the  base ten- 
t e r  was used. These calculat ions represent an approximation since some of the 
gases pass through the  window without coming i n  contact with the  base; a l so ,  a 
total-temperature gradient may be established within the  exhaust gases along 
the base and depends on the  c i rcu la t ion  of t he  exhaust gases within the  c lus t e r .  
The calculated change of exhaust-gas temperature was subtracted from the orig- 
i n a l  exhaust-gas t o t a l  temperature, and this resu l tan t  temperature was used t o  
determine the  heat- t ransfer  coef f ic ien ts  shown i n  f igu re  1.7. The change i n  
heat- t ransfer  coeff ic ient  (compare f i g s .  16 and 17) was negl igible  a t  the  high 
nozzle extensions but was appreciable a t  the  zero nozzle extension. The 
l a rges t  difference i s  approximately lo$ t o  15% and occurs f o r  the  configuration 
with Ct/de = 0.35, s/de = 0, and N = 4. Good agreement between the  various 
nozzle extensions was obtained fo r  the four-nozzle models of f igure  l7 (a ) ;  this 
agreement indicated no e f f e c t  of nozzle extension on curves r e l a t ing  the base- 
center heat- t ransfer  coeff ic ient  t o  the  base-center pressure.  Similar correc- 
t i o n s  f o r  base ch i l l i ng  applied t o  data  f o r  the  three-nozzle models presented 
i n  f igure  l7 (b )  f a i l  t o  show a s  good agreement between nozzle extensions a s  did 
the  data f o r  the  four-nozzle models. It i s  believed t h a t  c i rcu la t ion  e f f e c t s  
w i t h i n  the  three-nozzle models caused grea te r  ch i l l i ng  of t he  backflow coming 
i n  contact with the center of the base so t h a t  correct ions applied t o  the data 
f o r  base ch i l l i ng  a t  the  zero nozzle extension were not su f f i c i en t .  

For comparative purposes, i n  f igure  l 7 ( a )  t he  curves of Ct/de = 0.50 
and 0.75, represented by dashed l i nes ,  a r e  included with the  curve of 
Ct/de = 0.33. A comparison of these curves a t  a constant pc shows 8 s m a l l  
increase i n  heat- t ransfer  coeff ic ient  with a decrease i n  nozzle spacing, with 
the  greater  change occurring between the  two smaller nozzle spacings, repre- 
sented by the  curves Ct-de = 0.35 and Ct/d, = 0.30. This trend suggests an 
a l t e r a t i o n  of t he  backflow t o  y ie ld  higher ve loc i ty  gradients  on the  center 
port ion of the  base as the  nozzle spacing decreases. It should be noted t h a t  
according t o  accepted theory the heat- t ransfer  coef f ic ien t  a t  t he  stagnation 
point i s  d i r e c t l y  proportional t o  the  square root of the ve loc i ty  gradient on 
the  surface, extrapolated t o  conditions a t  t he  stagnation point .  

Since good agreement was obtained between nozzle extensions f o r  the four- 
nozzle models, the difference between t h e  heat- t ransfer  coef f ic ien ts  presented 
i n  f igure  16(a) and the  corrected data  of f igure  l7(a)  was used t o  calculate  
t he  amount of c h i l l i n g  present when the  nozzles were f lu sh  with the base. The 
r a t i o  of the decrease of the  gas temperature on the  base due t o  ch i l l i ng  
T t  - Tg t o  the difference between the  stagnation and p l a t e  temperature T t  - Tc 
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w a s  calculated and i s  presented i n  f igure  18(a) as a function of nozzle spacing. 
The curve i s  extrapolated t o  a temperature r a t i o  of 1.0 a t  since 
t h e  temperature of t he  gas would be expected t o  approach t h a t  of the base as 
t h e  nozzle spacing and consequent outflux of backflow from the  nozzle c lus t e r  
approach zero. This f igure  suggests a reduction of heat f l u x  t o  the  base by 
going t o  a s m a l l  nozzle spacing a s  a r e s u l t  of the  decreased gas t o t a l  temper- 
a ture  produced by base ch i l l i ng .  
cent increase of h, with decreases i n  nozzle spacing a t  a constant base pres- 
sure (data  were a r b i t r a r i l y  picked a t  
base-center heat- t ransfer  coef f ic ien t  with decreases i n  spacing. A t  a constant 
nozzle pressure r a t i o  an increase i n  pressure with decreasing nozzle spacing 
may be observed i n  f igure  1 8 ( ~ ) ;  t h i s  increase i n  pressure produces an increase 
i n  heat- t ransfer  coef f ic ien t .  (See f i g .  17.) Therefore, f o r  a given nozzle 
pressure r a t i o ,  reducing t h e  nozzle spacing reduces the  backflow-gas temperature 
but increases the  base-center heat- t ransfer  coef f ic ien t .  Data from the  curves 
of f igure  18 indica te  t h a t  by reducing the  spacing r a t i o  from 0.75 t o  0.35 on a 
model with four nozzles f lush  with t h e  base, a 10% reduction i n  the  difference 
between the  backflow and base temperatures might be expected, whereas the  heat- 
t r ans fe r  coeff ic ient  i s  increased by about 65% through the  combined e f f e c t s  
shown i n  f igures  18(b) and ( c ) ,  causing the  heat f lux  in to  the  base t o  be 
increased subs tan t ia l ly .  

Ct/de = 0 

However, f i gu re  18(b), which shows the per- 

pc = bo) ,  ind ica tes  a sharp increase i n  

Summary of Base-Center Heat-Transfer-Coefficient Data 

A summary of t he  base-center heat- t ransfer  coef f ic ien ts  of figure 16 a r e  
presented i n  f igure  19 i n  t he  form of Stanton number r e l a t ed  t o  Reynolds num- 
ber .  

t h e  window and conditions a t  t h e  center of the  base; t h a t  is, 

The Reynolds number w a s  based on the  nozzle-exit veloci ty ,  nozzle-exit diameter, 

and conditions at the  center  of t he  base: R = (;)c(Vd)e. For simplicity,  an 

average t o t a l  temperature of 120' F was used. 

The Stanton number f o r  t h i s  invest igat ion was based on a sonic ve loc i ty  a t  

Nst - - (rk)c(:)w* 

SUMMARY OF RESULTS 

From a general base heating invest igat ion on rocket-base configurations 
containing c lus t e r s  of th ree  and four  sonic nozzles, conducted t o  determine 
l o c a l  heat- t ransfer  coef f ic ien ts  and pressures due t o  backflowing exhaust gases 
choked within the  nozzle c lus t e r ,  t h e  following r e s u l t s  were obtained: 

1. The highest pressures and heat- t ransfer  coef f ic ien ts  were found a t  the  
center region of the base, with a second but smaller rise i n  heat- t ransfer  coef- 
f i c i e n t  occurring between adjacent nozzles. 



2. Increasing nozzle extension resul ted i n  decreased pressures and heat- 
t r ans fe r  coeff ic ients  primarily a t  the center of the base. This ef fec t  pro- 
duced more uniform pressure and heat-transfer-coefficient d i s t r ibu t ions  w i t h  
increases i n  nozzle extension. 

3.  Pressures and heat-transfer coeff ic ients  across the base were decreased 
by increasing the nozzle spacing and decreasing the nozzle pressure; the more 
severe conditions occurred f o r  the four-nozzle models. 

4. A t  a common base-center pressure on models containing four nozzles, 
decreases i n  the  nozzle spacing increased the base-center heat-transfer coef- 
f i c i e n t ,  whereas decreases i n  the  nozzle extension produced decreases i n  the 
base-center heat-transfer coeff lc ient  only a t  the lower nozzle extensions. 
decrease i n  heat-transfer coeff ic ient  w i t h  decreasing nozzle extension i s  
a t t r i bu ted  t o  a ch i l l i ng  of the backflow gases within the  nozzle c lus te r  such 
t h a t ,  based on a corrected gas temperature, curves of heat- t ransfer  coeff ic ient  
plot ted against pressure a t  the  center of the  base i s  independent of nozzle 
extension. 

The 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April  29, 1965. 
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TABLE I.- LOCATIONS OF BASE-PLATE INSTRUMENTATION IN 

0.41 
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.54 
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-79 
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_ -  - 

Number 
of 

nozzles , 
N 

4 

3 

0 

1 
1 
1 

FORM OF r/ro FOR FIRST SET OF TESTS 

.80 

.82 

.85 

(a) Thermocouples 

1.20 1.59 .99 
1.18 1.53 1.89 
1.15 1.46 1.76 

.. 

Nozzle 
spacing 

.37 

.85 

.58 

. .  

Thermocouple location, r/ro 

2.06 2.74 
2.77 3.69 
2.37 3.16 

1.001 1.31 

(b) Pressure orifices 

1 
I Number Nozzle 

of spacing 

N Ct/de ro 
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2.54 
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2.42 
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TABU 11.- LOCATIONS O F  BASE-PLATE INSTRUMENTATION I N  

FORM O F  r/ro FOR SECOND SET OF TESTS 

(a) Thermocouples 

Iiumber of I spacfng 
1 ~~~ nozzles , 

N 

Thermocouple locat ion,  

6 

1.10 
1.09 
1.08 

1 I I 

1.00 0.31 0.83 1.17 

1 .26 .87 1.13 
.3i .83 1.15 

(b) Pressure o r i f i c e s  

~ .29 .64 



I 

I n s t r u m e n t e d  b a s e  
p l  a t e  

S p a c e r  p l a t e s  

Figure 1.- Cutaway view of test apparatus. 
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.281 564 .843 
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375 
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rO 

0.506 
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* 379 
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A, 

0.421 
.660 

1.118 

0.142 
.246 
.444 

Parameter 
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0 1 0.375 I 0.750 1 1.125 

Figure 2- Geometric parameters used i n  investigation. 
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Figure 4.- Diagrams of three- and four-nozzle c lusters  wi th  impinging exhaust plumes. 
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s/de = 0.5 

Pe/Pa = 18.9 

(a) Ct/de = 0.35. 

Figure 5.- Schl ieren photographs of four-nozzle model. 1-65- 105 
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1 

(b) Ct/de = 0.75. (Dots indicate l ines of impingement.) 

Figure 5. - Concluded. 

1-65- 106 
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Figure 6.- Variat ion of rat io of base-window pressure to base-center pressure w i th  nozzle-exit pressure ratio. 
(Solid l ines denote choked conditions.) 
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(a) N = 4. (b) N = 3. 

Figure 7.- Variat ion of ra t io  of base-center pressure t o  nozzle-exit pressure w i t h  nozzle-exit pressure ratio. 
(Sol id l ines denote choked conditions.) 
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Figure 8.- Radial pressure distributions across base plate for Cdd, = 0.35 and N = 4. 
(Flagged data symbols indicate conditions of choked backflow.) 
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Figure 10.- Radial pressure distr ibutions across base plate for  Ct/de = 0.75 and  N = 4. 
(Flagged data symbols indicate condit ions of choked backflow.) 
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Figure 11.- Radial pressure distr ibut ions across base plate for Ct/de = 0.35 and N = 3. 
(Flagged data symbols indicate conditions of choked backflow.) 
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(b) Variable nozzle spacing for s/de = 0.5. 

F igure 13.- Variat ion of local base pressure w i th  changes in nozzle extension and  nozzle spacing fo r  N = 4. 
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(b) Variable nozzle extension fo r  Ct/de = 0.35. 

Figure 14.- Radial heat-transfer-coefficient d istr ibut ion fo r  choked backflow at N = 4. 
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(d) Variable nozzle spacing for S/de = 0. 

Figure 14.- Continued. 
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(f) Variable nozzle pressure rat io for  Ct/de = 0.50 and s/de = 0. 

Figure 14.- Concluded. 
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(b) Variable nozzle spacing for s/de = 0. 

F igure 15.- Radial heat-transfer-coefficient distr ibution fo r  choked backflow at N = 3. 
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Figure 15.- Concluded. 
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Figure 16.- Variation of base-center heat-transfer coefficient wi th  base-center pressure. (Flagged data symbols represent unchoked data.) 



.36 

,.A 

0 
n 

. a<  

.28 

.24 

.20 

hC 

. I 2  

.08 

0 
I O  20 30 40 50 60 70 

PC 

0 
.5 

(b) N = 3. 

Figure 16.- Concluded 
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Figure 19.- Variation of Stanton'number with Reynolds number at center of base. 
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